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ABSTRACT
This article reviews the literature on the circadian rhythms of body temperature and whole-
organism metabolism. The two rhythms are first described separately, each description preceded
by a review of research methods. Both rhythms are generated endogenously but can be affected
by exogenous factors. The relationship between the two rhythms is discussed next. In endother-
mic animals, modulation of metabolic activity can affect body temperature, but the rhythm of
body temperature is not a mere side effect of the rhythm of metabolic thermogenesis associated
with general activity. The circadian system modulates metabolic heat production to generate the
body temperature rhythm, which challenges homeothermy but does not abolish it. Individual cells
do not regulate their own temperature, but the relationship between circadian rhythms and
metabolism at the cellular level is also discussed. Metabolism is both an output of and an input to
the circadian clock, meaning that circadian rhythmicity and metabolism are intertwined in the cell.
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Introduction

The award of the 2017 Nobel Prize in physiology
to three researchers who first identified the mole-
cular mechanism of circadian rhythms helped
bring the attention of life scientists and health
professionals to the importance of circadian rhyth-
micity for the healthy operation of living organ-
isms [1,2]. Disruption of the relationship between
the internal circadian clock and the synchronizing
environmental cycle (such as the disruption
observed after transcontinental travel, during
shift work, or even concomitantly with the exten-
sive use of artificial light in the modern 24-hour
society) has been shown to have serious negative
health effects, including breast cancer, cardiovas-
cular disease, psychiatric disorders, and the meta-
bolic syndrome [3–7].

One of the first physiological variables subjected
to long-term monitoring that allowed the determi-
nation of daily rhythmicity in the mid 1800’s was
body temperature [8,9]. Studying the rhythmicity
of body temperature is important for at least two
reasons: 1) the body temperature rhythm is a con-
venient marker of the circadian clock for studies
on biological rhythms and sleep, and 2) the
rhythm interacts with a concurrent rhythm of

metabolism and reflects a constant conflict
between homeostasis and circadian rhythmicity
in the control of core temperature in mammals
and birds. Two previous comprehensive literature
reviews were published 28 years ago [10] and
10 years ago [11]. Reviews by other authors have
concentrated on particular aspects of the rhythmi-
city of body temperature [12–14].

Unlike mammals and birds, most living beings on
Earth (including fungi, plants, microbes, and the
majority of animal species) do not regulate the tem-
perature of their bodies by autonomic mechanisms
[15,16]. This means that, in the absence of effective
behavioral adjustments (which are also limited to a
few taxonomic groups), the body temperature of an
organismwill vary with the temperature of the envir-
onment. Because of the dependence of biochemical
reactions on temperature, this means also that the
organism’s metabolism will vary with the tempera-
ture of the environment. It is not surprising, there-
fore, that the body temperature and metabolism of
most living beings on Earth will oscillate daily and
seasonally along with the daily and seasonal oscilla-
tion in environmental temperature. However, a rela-
tively small group of animals (primarily mammals
and birds) regulates body temperature by both beha-
vioral and autonomic mechanisms [17–19]. These
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animals, often called endothermic homeotherms,
can maintain a relatively stable body temperature
while exposed to heat or cold because of their ability
to modulate metabolic heat production as well as
convective and evaporative heat loss. As emphasized
by Claude Bernard in the 19th century, the constancy
of physico-chemical properties of the internal envir-
onment of an organism is essential for a free life [20].
Yet, as will be discussed here, body temperature and
metabolism exhibit daily and seasonal variation in
mammals and birds – not as a direct effect of varia-
tion in ambient temperature but as an endogenously
controlled process. An endogenously generated phy-
siological oscillation with a period (duration) of
approximately 24 hours is called a circadian rhythm
[21], and this article will deal with the circadian
rhythmicity of body temperature and metabolism.
Seasonal oscillation in body temperature and meta-
bolism (as reflected principally in the process of
hibernation) has been reviewed by others recently
[22,23] and will not be covered here. This review will
concentrate on circadian rhythmicity.

Circadian rhythmicity of body temperature

Research methodology

A first requirement for the recording of circadian
rhythms of body temperature is the possession of a
thermometer. Although a standard clinical thermo-
meter can be used if the animals are not disturbed by
the frequent contact with the experimenter, more
sophisticated thermometers are required formeasure-
ments taken many times a day for many consecutive
days. The monitoring of body temperature in human
subjects can be easily accomplished with commer-
cially available biomonitoring systems such as those
marketed by AD Instruments Inc. (Colorado Springs,
Colorado), Biopac Systems Inc. (Goleta, California),
Mindware Technologies Ltd. (Gahanna, Ohio), and
Noldus Information Technology (Wageningen,
Netherlands). Temperature-sensitive radio transmit-
ters may be conveniently swallowed [24,25], although
they stay in the digestive system for only a few days
and are of limited use in long-term studies. Gut
temperaturemeasuredwith a swallowed sensor-trans-
mitter correlates better with rectal temperature than
does axillary temperature (measured under the
arm) [26].

Monitoring of body temperature in other animal
species usually involves surgically implanted tempera-
ture-sensitive sensors for short-range telemetry in the
laboratory [27–32] or surgically implanted data log-
gers for free-ranging animals [33–38] (see also Table 1
in the review article by Maloney and colleagues [14]).
For telemetry equipment, the major manufacturers in
the United States are Data Sciences Inc. (St. Paul,
Minnesota), the Stellar Telemetry branch of TSE
Systems (Chesterfield, Missouri), the Implantable
Telemetry branch of Millar Inc. (Houston, Texas),
and the E-Mitter Telemetry branch of Starr Life
Sciences (Oakmont, Pennsylvania). Starr Life’s
E-mitters and Millar’s Telemeters are transponder
transmitters (that is, transmitters that are tele-ener-
gized by the radio receiver). This feature is especially
convenient in long-term studies in which traditional
transmitters will run out of battery, although trans-
ponder transmitters require maintenance after one or
two years of operation, which reduces their advantage
over battery-based transmitters in multi-year studies.

An alternative to telemetry, especially for field
studies, is the data logger. Data loggers are devices
that can record and store data. The advantage over
telemetry is that the experimental subjects can move
freely over large distances without causing a loss of
signal. A disadvantage is that the experimenter can-
not access the data until the logger is retrieved.
Manufacturers of data loggers include DataTaker
Ltd. (Rowville, Australia), Onset Computer Corp.
(Bourne, Massachusetts), and Pico Technology Ltd.
(St. Neots, United Kingdom). A very convenient data
logger is the iButton temperature logger (Maxim
Integrated Products, San Jose, California). These

Table 1. Studies documenting the existence of daily rhythmicity
of body temperature.
Laboratory rats [30,39–87,308,385,386,396,428,429,611,629,642,

645]
Domestic mice [31,88–116,424]
Golden hamsters [117–123,310,628,631,648]
Other rodents [28,32,35,124–166,306,346,374,380,446,450,

454,562,577,651,652]
Dogs and cats [167–176]
Goats and sheep [177–187,314,372,381,433,434]
Horses and bovines [33,188–198,315,322]
Non-human
primates

[199–217,378,387,431,432,469,610]

Humans [9,26,218–261,520,622,623,627]
Other mammals [27,29,38,262–286,342,370,371,373,375–

377,412,453]
Birds [36,287–303,382,395,414,415]
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miniature loggers (16-mm diameter) can be surgi-
cally implanted like radio transmitters. Like larger
loggers, iButtons have the advantage of not requiring
a separate receiver and the disadvantage of not
allowing on-line access to the data. Memory limita-
tions make them unsuitable for long studies with
high temporal resolution. Available at a higher
price but having the ability to record data for much
longer are the miniature data loggers marketed by
SubCue Dataloggers (Calgary, Canada) and Star-
Oddi Ltd. (Gardabaer, Iceland).

In large animals, surgical implantation can be
avoided. TekVet Technologies (Garden City,
Kansas) and FeverTags (Amarillo, Texas) manufac-
ture temperature transmitters for use in livestock. The
transmitters are placed in the animal’s ear, close to the
tympanic membrane, thus allowing measurement of
core temperature without the need for surgical inter-
vention. This technology has not been thoroughly
evaluated in livestock, and evaluations with human
subjects have not been very encouraging [304,305].
For smaller animals in a laboratory setting, including
small rodents, temperature-sensitive PIT tags (passive
integrated transponder radio-frequency identification
devices) can be used [306]. The tags are the size of a
grain of rice and can be injected with a syringe

subcutaneously or intraperitoneally without the need
for a surgical procedure. Because they are transpon-
ders, PIT tags require no batteries and can be used
uninterruptedly for years. Biomark Inc. (Boise, Idaho)
is a major supplier of PIT tag equipment.

Endogenous determinants

Daily rhythmicity of body temperature has been
extensively documented in many species of birds
and mammals. More than 300 articles are listed in
Table 1. Although the studies varied greatly in
methodology and experimental design, they all
provided evidence of a regular daily oscillation of
body temperature in a variety of species.

An example of the daily rhythm of body tem-
perature is shown in Figure 1. The data were
obtained from two white-tailed antelope squirrels
(Ammospermophilus leucurus) individually housed
in the laboratory [306]. The body core temperature
of both animals rose daily at the time of lights-on
and declined to a nighttime low shortly after
lights-off. One of the squirrels (top panel) exhib-
ited a brief temperature decline in the middle of
the light phase, whereas the other squirrel (bottom
panel) did not. The mean and range of oscillation

Figure 1. Four-day segments of the records of body temperature of two white-tailed antelope squirrels (Ammospermophilus leucurus,
120 g average body mass) housed individually in the laboratory at 25°C. The data were collected and are plotted with 6-minute
resolution. The white and black bars at the top indicate the light and dark phases of the prevailing light-dark cycle.
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of the rhythms of the two animals were similar but
not identical.

The records of body temperature of another white-
tailed antelope squirrel are shown in greater temporal
resolution in Figure 2 so that high-frequency oscilla-
tions can be seen better. Superimposed on the daily
oscillation, one can see somewhat irregular oscilla-
tions, with smaller amplitude, lasting approximately
1 or 2 hours. Such ultradian oscillations in body
temperature have received much less attention from
researchers than circadian oscillations [307], but they
have been noted in reports of the rhythmicity of body
temperature in rats [308,309], golden hamsters
[310,311], lemmings [312], squirrel monkeys [313],
sheep [314], and dairy cows [315]. Whereas the cir-
cadian rhythmicity of body temperature has been
thoroughly confirmed by formal time series analysis
[316–319], ultradian rhythmicity has rarely been for-
mally analyzed. Nonetheless, spectral analysis of body
temperature data from rats and hamsters has been
conducted and has documented statistically signifi-
cant ultradian oscillation, predominantly in the
range of 2 to 12 hours [308–311]. Still unsettled is
the question of whether the high-frequency peaks in
the periodograms represent true biological rhythms
or merely the harmonics needed to describe the wave
form of a circadian rhythm generated by a pacemaker
that does not produce an ideal sinusoidal signal. As a
matter of fact, the shape (waveform) of the circadian

rhythm of body temperature has not been thoroughly
studied. The waveform is generally described as sinu-
soidal, although it is often bimodal or square, and
there have been very few attempts to quantify the
description of the waveform of circadian rhythms.
The strength (robustness) of circadian rhythms,
which is related to the stability of waveform, has
received a little more attention [320], but very little
is known about the determinants of the waveform of
circadian rhythms. As for ultradian oscillations, it has
even been argued that they should be called “episodic
ultradian events” (and not “ultradian rhythms”)
because the oscillations are most often aperio-
dic [321].

For investigation of the characteristics of endo-
genously-generated rhythms, organisms must be
studied in non-rhythmic environments. Although
researchers have not always made certain that
environmental conditions were exactly constant,
many laboratory studies have ensured the absence
of cycles of ambient temperature, food availability,
and predator danger. For standardization purposes,
most studies maintained a light-dark cycle with
12 hours of light and 12 hour of darkness per day.
Data from 218 studies with 93 species are summar-
ized in Table 2. It can be seen that the main para-
meters of the body temperature rhythm – mean,
range of oscillation, and acrophase (peak time
expressed in hours after lights-on) – vary somewhat

Figure 2. One day segment of the records of body temperature of a white-tailed antelope squirrel housed individually in the
laboratory at 25°C. The data were collected and are plotted with 6-minute resolution.

324 R. REFINETTI



Table 2. Parameters of the body temperature rhythm of 93 species of mammals and birds.
Species Mean °C Range °C Phase h Source

Acomys russatus 36.2 1.5 18 [152]
Acomys russatus 37.1 2.5 18 [125]
Aethomys namaquensis 36.0 2.0 17 [153]
Aethomys namaquensis 36.8 3.9 18 [129]
Alces alces 37.8 0.7 12 [377]
Ammospermophilus leucurus 36.4 4.6 6 [306]
Antechinus stuartii 36.5 3.1 19 [263]
Antidorcas marsupialis 39.4 1.1 12 [371]
Aotus trivirgatus 37.8 1.4 18 [199]
Apodemus flavicollis 37.4 1.7 17 [132]
Apodemus flavicollis 38.0 3.0 15 [166]
Apodemus mystacinus 38.4 2.2 17 [125]
Arvicanthis ansorgei 38.6 3.0 6 [79]
Arvicanthis niloticus 37.5 2.2 6 [134]
Arvicanthis niloticus 37.5 2.1 6 [154]
Arvicanthis niloticus 37.6 1.7 5 [135]
Bettongia gaimardi 37.4 1.7 22 [264]
Bos taurus 38.1 0.4 10 [198]
Bos taurus 38.2 0.9 18 [33]
Bos taurus 38.3 1.4 14 [189]
Bos taurus 38.7 0.8 10 [191]
Bos taurus 39.2 0.9 12 [315]
Bos taurus 39.8 1.0 18 [192]
Callithrix jacchus 37.4 3.0 5 [210]
Callithrix jacchus 37.5 3.0 6 [209]
Callithrix jacchus 37.5 3.0 6 [217]
Callospermophilus lateralis 36.5 4.0 6 [148]
Camelus dromedarius 37.4 1.0 10 [453]
Camelus dromedarius 37.4 2.0 10 [262]
Camelus dromedarius 37.9 0.8 10 [285]
Canis familiaris 38.7 0.7 11 [176]
Canis familiaris 39.0 0.8 11 [174]
Canis familiaris 39.1 0.5 11 [172]
Canis familiaris 39.2 0.4 12 [175]
Capra hircus 38.5 0.7 13 [183]
Capra hircus 38.8 1.0 10 [179]
Capra hircus 38.9 0.7 14 [434]
Capra hircus 39.0 0.4 16 [433]
Capra hircus 39.0 0.8 10 [184]
Capra ibex 39.0 1.0 11 [185]
Cebus albifrons 37.2 2.7 6 [200]
Columba livia 40.0 2.1 6 [415]
Columba livia 40.3 2.7 6 [394]
Columba livia 41.5 1.5 6 [287]
Coturnix coturnix 41.0 1.3 15 [289]
Cryptomys hottentotus 35.2 0.8 18 [454]
Ctenomys knighti 36.6 1.1 18 [163]
Cynomys ludovicianus 37.4 2.5 7 [265]
Dasypus novemcinctus 35.5 2.6 18 [266]
Dasyurus viverrinus 36.5 3.6 18 [273]
Didelphis marsupialis 35.5 2.5 19 [267]
Didelphis virginiana 35.4 4.0 20 [267]
Dryomys laniger 36.4 5.6 16 [155]
Equus asinus 37.1 2.1 8 [262]
Equus caballus 37.4 1.0 12 [195]
Equus caballus 38.0 0.9 14 [194]
Equus caballus 38.3 1.0 14 [188]
Erinaceus europaeus 35.4 1.2 16 [342]
Eulemur fulvus 38.0 0.9 18 [208]
Felis catus 37.9 1.3 16 [169]
Felis catus 38.0 1.3 19 [173]
Felis catus 38.3 1.0 15 [170]
Felis catus 38.4 0.5 14 [171]
Gallus domesticus 40.2 1.1 12 [298]

(Continued )
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Table 2. (Continued).

Species Mean °C Range °C Phase h Source

Gallus domesticus 40.2 1.5 6 [297]
Gallus domesticus 40.7 2.2 8 [291]
Gallus domesticus 40.8 0.8 6 [295]
Geocolaptes olivaceus 40.0 3.8 12 [36]
Glaucomys volans 37.1 2.1 17 [652]
Heterocephalus glaber 33.8 3.8 15 [268]
Homo sapiens 36.5 1.2 10 [219]
Homo sapiens 36.7 1.1 10 [227]
Homo sapiens 36.8 0.8 8 [235]
Homo sapiens 36.8 0.8 10 [231]
Homo sapiens 36.8 0.7 10 [520]
Homo sapiens 36.8 1.2 10 [233]
Homo sapiens 36.9 1.2 10 [247]
Homo sapiens 36.9 1.0 8 [224]
Homo sapiens 36.9 1.0 7 [26]
Homo sapiens 36.9 0.9 11 [323]
Homo sapiens 37.0 1.0 10 [654]
Homo sapiens 37.0 1.0 8 [250]
Homo sapiens 37.0 1.2 9 [324]
Homo sapiens 37.0 1.1 10 [226]
Homo sapiens 37.0 1.3 10 [228]
Homo sapiens 37.0 1.2 10 [230]
Homo sapiens 37.0 0.8 10 [240]
Homo sapiens 37.0 1.0 9 [242]
Homo sapiens 37.0 0.8 10 [255]
Homo sapiens 37.1 1.0 11 [241]
Homo sapiens 37.6 1.6 10 [234]
Ictidomys tridecemlineatus 36.4 5.0 7 [380]
Ictidomys tridecemlineatus 36.7 4.2 8 [39]
Isoodon macrouros 36.2 2.5 16 [267]
Isoodon obesulus 36.5 2.5 13 [282]
Lama glama 38.5 1.4 6 [376]
Lama glama 38.5 1.2 10 [375]
Lasiorhinus latifrons 35.3 2.9 16 [269]
Loxodonta africana 36.5 1.3 12 [286]
Macaca fuscata 37.0 2.4 9 [201]
Macaca mulatta 36.8 1.4 10 [203]
Macaca mulatta 37.0 1.8 9 [211]
Macaca mulatta 37.2 1.0 9 [325]
Macaca mulatta 38.1 1.6 10 [202]
Macaca nemestrina 38.0 2.0 8 [212]
Macropus giganteus 34.6 2.8 19 [270]
Macropus rufus 36.3 1.7 17 [270]
Marmota monax 37.7 1.3 10 [137]
Meleagris gallopavo 40.2 1.2 12 [299]
Mephitis mephitis 36.4 1.3 12 [117]
Meriones libycus 37.3 1.4 18 [374]
Meriones unguiculatus 36.9 2.7 8 [157]
Meriones unguiculatus 37.4 2.7 14 [39]
Mesocricetus auratus 36.0 2.9 14 [39]
Mesocricetus auratus 36.8 1.7 18 [121]
Mesocricetus auratus 36.9 2.5 17 [648]
Mesocricetus auratus 38.0 1.3 17 [119]
Microcebus murinus 36.3 2.8 18 [431]
Microcebus murinus 36.5 2.5 18 [387]
Microcebus murinus 36.6 2.5 18 [204]
Microcebus murinus 36.8 2.0 16 [432]
Microcebus murinus 36.8 2.3 17 [213]
Monodelphis domestica 34.3 6.5 15 [283]
Mus musculus 36.0 2.0 15 [109]
Mus musculus 36.1 2.0 18 [107]
Mus musculus 36.2 2.4 17 [326]
Mus musculus 36.3 2.2 16 [94]
Mus musculus 36.5 1.8 21 [113]

(Continued )
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Table 2. (Continued).

Species Mean °C Range °C Phase h Source

Mus musculus 36.6 2.2 18 [97]
Mus musculus 36.6 2.1 19 [88]
Mus musculus 36.6 2.0 16 [108]
Mus musculus 36.7 1.6 19 [89]
Mus musculus 36.8 1.7 18 [93]
Mus musculus 36.8 2.1 18 [104]
Mus musculus 36.8 2.2 20 [105]
Mus musculus 36.9 2.2 16 [92]
Mus musculus 37.0 2.0 17 [40]
Myrmecobius fasciatus 35.0 5.8 10 [412]
Nasua nasua 37.5 1.9 7 [271]
Octodon degus 36.4 1.6 8 [450]
Octodon degus 36.5 2.0 5 [142]
Octodon degus 36.8 2.5 11 [39]
Octodon degus 37.0 1.7 5 [139]
Octodon degus 37.2 1.8 8 [651]
Octodon degus 37.3 2.0 6 [140]
Odocoileus hemionus 38.3 1.8 12 [279]
Oryctolagus cuniculus 38.9 0.9 20 [272]
Oryctolagus cuniculus 39.8 0.8 12 [117]
Oryx leucoryx 37.8 3.0 7 [373]
Otospermophilus beecheyi 36.4 2.4 5 [147]
Ovis aries 38.2 1.0 9 [186]
Ovis aries 38.5 0.3 5 [372]
Ovis aries 38.7 1.0 9 [180]
Ovis aries 39.3 0.3 14 [433]
Ovis aries 39.6 2.0 13 [187]
Ovis aries 40.4 1.3 9 [178]
Pachyuromys duprasi 36.5 2.5 18 [28]
Papio hamadryas 37.9 1.7 8 [214]
Petaurus breviceps 37 3.2 18 [284]
Procyon lotor 38.1 1.4 1 [117]
Rattus norvegicus 36.8 2.5 16 [57]
Rattus norvegicus 36.9 1.8 18 [60]
Rattus norvegicus 37 2.1 18 [327]
Rattus norvegicus 37 1.9 19 [51]
Rattus norvegicus 37 1.8 18 [65]
Rattus norvegicus 37 1.7 18 [52]
Rattus norvegicus 37.1 1.8 18 [73]
Rattus norvegicus 37.2 1.5 17 [45]
Rattus norvegicus 37.2 1.5 17 [50]
Rattus norvegicus 37.2 1.0 18 [86]
Rattus norvegicus 37.3 2.1 16 [39]
Rattus norvegicus 37.3 1.0 18 [645]
Rattus norvegicus 37.3 1.4 18 [328]
Rattus norvegicus 37.4 1.4 18 [43]
Rattus norvegicus 37.4 1.3 18 [396]
Rattus norvegicus 37.4 1.2 −1 [612]
Rattus norvegicus 37.4 1.4 18 [308]
Rattus norvegicus 37.4 1.6 18 [429]
Rattus norvegicus 37.5 1.5 18 [77]
Rattus norvegicus 37.5 2.0 18 [44]
Rattus norvegicus 37.5 1.4 18 [428]
Rattus norvegicus 37.5 1.3 18 [40]
Rattus norvegicus 37.5 1.4 18 [88]
Rattus norvegicus 37.5 1.2 18 [80]
Rattus norvegicus 37.6 1.1 18 [41]
Rattus norvegicus 37.6 1.2 16 [47]
Rattus norvegicus 37.6 1.7 19 [329]
Rattus norvegicus 37.7 1.3 17 [46]
Rattus norvegicus 37.8 1.8 18 [79]
Rhabdomys pumilio 36.6 2.0 5 [153]
Saimiri sciureus 37.5 2.0 8 [378]
Saimiri sciureus 37.5 2.7 6 [610]

(Continued )
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from study to study within the same species, possi-
bly because of methodological differences, but
intraspecies differences are most often smaller
than interspecies differences. Although not infer-
able from the data shown in the table, it should also
be pointed out that intraindividual differences
within a species are usually smaller than interindi-
vidual differences [322].

In terms of the mean level of body tempera-
ture, a noticeable trend in Table 2 is that the body
temperature of birds tends to be more than 3 °C
higher than that of mammals (on average, 41°C
and 37.5 °C, respectively), and the temperature of
marsupial mammals tends to be about 3°C lower
than that of placental mammals. The range of
oscillation also varies greatly from species to spe-
cies, being noticeably wider in squirrels than in
other rodents of comparable body size. The acro-
phase (peak time) is generally consistent with the
temporal niche of the species, in the sense that
the acrophase usually occurs at night (i.e., more
than 12 hours after lights-on) for nocturnal ani-
mals and during the day for diurnal animals,
although farm animals tend to have unusually
late acrophases (sometimes extending into the
early dark phase).

A few broad interspecies comparisons of para-
meters of the body temperature rhythm have been
previously made by other scholars. Aschoff noticed
that the amplitude of the temperature rhythm is 3 to 6
times smaller in large animals than in small animals in
the bodymass range from 10 g to 1 kg [330]. Based on
data from 206 independent studies in various labora-
tories, I can confirm that the amplitude is about 3
times narrower in larger mammals for the full range
of body weight from 10 g to 2,000 kg, as shown in
Figure 3 (upper panel). Presumably, large bodies can
buffer the effects of the oscillations in heat production
and heat loss that are responsible for the body tem-
perature rhythm. Interestingly, body size also has an
effect on the mean level of the temperature rhythm
(Figure 3, lower panel). Animals in the 1,000 kg range
have, on average, body temperatures 1.4 °C higher
than the body temperatures of animals in the 10 g
range. Again, this is presumably due to the greater
thermal inertia of large animals. It should be pointed
out that, in both cases (amplitude and mean tempera-
ture), the correlation with body mass is statistically
significant but is far from perfect (r = −0.51 and r =
0.38, respectively). This may explain why Lovegrove
failed to find a correlation between body size and
mean body temperature in a set of 267 studies in

Table 2. (Continued).

Species Mean °C Range °C Phase h Source

Saimiri sciureus 37.9 2.0 7 [313]
Sarcophilus harrisii 35.7 4.2 18 [273]
Sciurus carolinensis 37.3 3.0 5 [156]
Sciurus vulgaris 39.0 2.6 6 [161]
Sminthopsis macroura 36.2 5.5 18 [409]
Spalax ehrenbergi 36.4 1.5 5 [446]
Spermophilus xanthoprymnus 37.0 4.0 7 [35]
Struthio camelus 39.1 1.8 9 [300]
Sturnus vulgaris 40.1 3.2 7 [303]
Suncus murinus 35.0 6.0 14 [29]
Sus scrofa 38.7 0.6 12 [280]
Sus scrofa 39.0 1.4 14 [275]
Sus scrofa 39.6 0.5 9 [274]
Tamiasciurus hudsonicus 39.2 2.5 6 [131]
Thallomys nigricauda 36.8 2.1 18 [150]
Thallomys paedulcus 36.6 2.9 18 [129]
Trichosurus vulpecula 37.4 2.9 16 [267]
Tupaia belangeri 37.4 4.2 6 [652]
Tupaia belangeri 38.0 5.0 5 [27]
Tyto alba 40.3 2.2 17 [414]
Urocitellus parryii 36.9 4.4 8 [346]
Urocitellus parryii 37.5 2.0 7 [348]
Urocitellus parryii 38.5 4.0 6 [158]
Urocitellus richardsonii 36.0 3.2 6 [164]
Urocitellus richardsonii 36.2 3.3 10 [39]
Vombatus ursinus 34.7 1.4 18 [278]
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animals weighing under 1 kg [331]. Given the very
wide spread of data seen in Figure 3, it is to be
expected that large differences in body size would be
needed for the detection of a significant correlation.
Mortola and Lanthier surveyed 125 studies in mam-
mals ranging from 10 g to 5,000 kg and did find that
the amplitude of the body temperature rhythm is
smaller, and the mean level is higher, in large animals
than in small animals [332]. Hetem and colleagues
found a large reduction (rather than increase) inmean
body temperature with increase in body mass above
10 kg in 17 species of large mammalian herbivores
[333], but the evaluated studies were conducted in the

wild, where food and water shortages were likely to
affect body temperature, as discussed below.

Most studies of the body temperature rhythm are
conducted over a few days and cannot provide evi-
dence regarding the long-term stability of the rhythm.
A study conducted on four species of farm animals
over two years provided valuable information about
the variability of the parameters of the body tempera-
ture rhythm over days and months [334]. As shown
for a single bovine in Figure 4, the normal circadian
range of oscillation is wider than the range of oscilla-
tion of same-time-of-day values over days or months.
This animal had full unrestricted access to food and

Figure 3. Parameters of the body temperature rhythm as a function of bodymass as determined for 86mammalian species in 206 published
studies. Top: daily range of oscillation of the body temperature rhythm. Bottom: mean level of the body temperature rhythm.
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water, but ambient temperature ranged from 8°C in
the winter to 30°C in the summer, and the stability of
same-time-of-day values over months emphasizes the
excellence of homeothermic control of body tempera-
ture in farm animals. Of course, not all species have
such good control of their core temperature, and
many small rodents put homeothermy on hold during
the winter and engage in hibernation [22,23,335,336].
A few studies have suggested that circadian rhythmi-
city of body temperature is preserved during hiberna-
tion (albeit with very small amplitude) [337–340], but
many other studies have found no body temperature
rhythm in hibernating animals [35,341–348].

A truly endogenous rhythm must persist (with a
slightly different period) in the absence not only of
environmental cycles of ambient temperature and
food availability but also in the absence of a light-
dark cycle. Much fewer studies have been conducted
under conditions of constant darkness (or constant
light), but the endogenous nature of the body tem-
perature rhythm has been confirmed in many species
of birds and animals, as shown in Table 3. Of course,
the fact that the body temperature rhythm free-runs
under constant environmental conditions is proof
only of the existence of an endogenous circadian
clock. It is not proof that the body generates a tem-
perature rhythm as a fundamental process. The rhyth-
micity of body temperature could be simply a side
effect of the rhythmicity of another endogenously
generated process. This matter will be discussed
further below.

Exogenous determinants

Studies of the body temperature rhythm con-
ducted in the outdoors have demonstrated that
variations in day length, ambient temperature,
food and water availability, predator danger, and
other variables can affect the body temperature
rhythm of free-ranging animals [38,370–377].
Unfortunately, studies conducted in the wild are
almost always correlational and cannot differenti-
ate the action of the various environmental factors,
but studies conducted under controlled laboratory
conditions have confirmed the specific effects of
ambient temperature and food availability.

Regarding ambient temperature, several studies
have described an increase in the amplitude of the
body temperature rhythm in animals exposed chroni-
cally to ambient temperatures below thermoneutral-
ity. This phenomenon has been described in squirrel
monkeys [378], tree shrews [379], thirteen-lined grou-
nd squirrels [380], sheep [381], pigeons [382], mouse-
birds [383], and sunbirds [384]. On the other hand, no
effect of ambient temperature on the amplitude of the
body temperature rhythmwas found in rats [385,386],
mouse lemurs [387], or golden hamsters and fat-tailed
gerbils [379]. Genuine species differences may be
responsible for the conflicting results.

Regarding food availability, it has long been
known that fasted animals experience a reduction
in metabolic rate and a fall in body temperature
[388–399]. What is especially interesting about

Figure 4. Rectal temperature of a female bovine (Bos taurus) as measured on three time scales: month-to-month (evening
measurements conducted monthly for two years), day-to-day (evening measurements conducted daily for 10 days), and hour-to-
hour (measurements conducted every 3 hours over a single day). The abscissas of the three plots are marked in months, days, and
hours, respectively.

Table 3. Studies documenting the existence of circadian (free-running) rhythmicity of body temperature.
Rodents [41, 52, 60, 65–67, 72, 76, 79, 80, 90, 103, 104, 106, 118, 122, 134, 141, 142, 152, 162, 163, 306, 328, 346, 348–356, 380, 446,

450, 454, 612, 629]
Non-human
primates

[199, 202, 204, 206–208, 213, 216, 313, 325, 431, 469]

Humans [218, 230, 232, 233, 242, 357–366]
Other mammals [27, 169–171, 178, 188, 266, 275, 285, 338, 367, 368, 453]
Birds [287–291, 293, 295–297, 299, 303, 369, 382, 413]
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this phenomenon is its modulation by the circa-
dian system. The hypothermia induced by food
deprivation (or chronic food restriction) does not
occur indiscriminately; rather, it is restricted to
the inactive phase of the circadian cycle. Some
animals have a natural disposition to exhibit daily
torpor even when fed regularly [380,400–412],
but various true homeotherms exhibit circadian-
modulated starvation-induced hypothermia. This
has been documented in doves [413], owls [414],
pigeons [394,395,415–417], quail [418], mouse-
birds [383,419], finches [420], pygmy mice
[421], deer mice [422], domestic mice [423–
425], rats [396,397,426–430], lemurs [431,432],
sheep [433], goats [434], and camels [435].

To avoid misunderstandings, it should be stressed
that any event in the environment, whether rhythmic
or not, can disturb (“mask”) circadian rhythms. True
synchronization (“entrainment”) of circadian
rhythms has long been known to be produced by the
light-dark cycle [436–438], but it can also be produced
by cycles of ambient temperature [439–455] and food
availability [456–481]. A study in mice provided the
suggestion that cycles of ambient temperature may be
as effective as light-dark cycles in producing entrain-
ment but may not be as effective in the production of
masking [452], and further studies are needed to con-
firm this observation. The control of circadian
rhythms in the wild is likely determined just as much
by the influence of entrainment as by the influence of
masking on the endogenously-generated rhythms
[482,483].

Circadian rhythmicity of metabolism

Research methodology

For the monitoring of whole-organism metabolism,
three techniques are well established: direct calorime-
try, indirect calorimetry, and the isotopic tracer tech-
nique [484]. The isotopic tracer technique is
convenient for field studies, but it does not provide
the temporal resolution needed for the study of circa-
dian rhythms. In laboratory studies, direct calorimetry
is the “gold standard” for accurate measurement of
whole-organismmetabolism, but indirect calorimetry
is by far the most commonly used technique [485].

Indirect calorimetry is based on the measure-
ment of oxygen consumed (and carbon dioxide

produced) by the organism and on the chemical
properties of oxidation. Knowledge of the stoichio-
metric properties of oxidative processes makes it
possible to calculate the amount of nutrient being
combusted, and the amount of heat being released,
by measuring only the amount of oxygen being
consumed. To measure the concentration of oxy-
gen in the air used by the organism (as well as the
concentration of carbon dioxide, if greater accu-
racy is needed in the computation of metabolic
rate), gas analyzers are employed. Suppliers of
gas analyzers for biomedical research include
Servomex (Crowborough, England), Columbus
Instruments (Columbus, Ohio), Sable Systems
International (North Las Vegas, Nevada), and
Qubit Systems (Kingston, Canada). For data col-
lection the animal of interest is placed inside a
sealed chamber, and a measured volume of air is
passed through the chamber. By determining the
difference in the concentration of oxygen in the air
that enters the chamber and in the air that leaves
the chamber, one can determine the percentage of
oxygen consumed by the organism. The percen-
tage can then be converted into amount of oxygen
(and corresponding amount of heat produced) if
the exact flow of air through the chamber is
known [486,487]. A computerized system that
activates the air-switch valves and collects the
data is needed for the monitoring of metabolism
with adequate temporal resolution for long-term
studies of circadian rhythmicity.

Endogenous determinants

Daily and/or circadian rhythmicity in whole-
organism metabolism has been documented in
mammals and birds, as shown in Table 4. Most
studies have been conducted on rodents, but other
animals have been studied as well.

It has long been known that, when expressed per
unit of body mass, metabolic rate is higher in small
animals than in large animals [516–519]. It is not
surprising, therefore, to find out that the mean level
of the daily rhythm of metabolism is higher in small
animals than in large animals, as shown in Figure 5
(upper panel). This figure was prepared with data
from 17 of the 61 studies listed in Table 4. Only
studies that involved mammals and provided suffi-
cient information for conversion of the results to the
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common unit of W/kg were used. Of special interest
are the data on percent range shown in the lower
panel of the figure. Percent range is the range of daily

oscillation expressed as a percentage of the daily
mean, and it is used instead of the absolute value
because the interspecies differences in mean values
are quite large, so that the range for each species is
meaningful only in reference to the mean for that
species. Thus, for example, humans (70 kg) had a
mean metabolic rate of 1.3 W/kg with a range of
oscillation of 0.2W/kg, so that the percent range was
15% [520]. In contrast, domestic mice (30 g) had a
mean metabolic rate of 17.9 W/kg with a range of
oscillation of 15.2 W/kg, so that the percent range
was 85% [521], which is much greater than the

Table 4. Studies documenting the existence of daily rhythmi-
city of whole-organism metabolism.
Rats [42, 43, 62, 63, 81, 83, 86, 428, 488–496, 611, 612]
Other
rodents

[28, 103, 125, 128, 143, 146, 150, 312, 400, 424, 497–504,
521, 628]

Humans [248, 505, 506, 520, 602]
Other
mammals

[266, 268, 270, 271, 277, 313, 507–511]

Birds [298, 394, 405, 414,512–515]

Figure 5. Mean level (upper plot) and range of oscillation (lower plot) of the daily rhythm of metabolism as a function of body mass
in various mammalian species. The range of oscillation is expressed as a percentage of the daily mean (“Percent range”). The data
were obtained from 17 published studies and converted to the common unit of W/kg.
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percent range in humans. As was the case for the
body temperature rhythm, different studies on the
same species were somewhat variable but relatively
consistent. For example, a different study on domes-
ticmice reported ameanmetabolic rate of 19.7W/kg
with a range of oscillation of 12.4 W/kg, so that the
percent range was 63%[424], thus smaller than in the
other mouse study but still larger than in humans.

Although not in the scope of this article, it
should be mentioned that the circadian modula-
tion of metabolism has been studied at the cellular
level, and several reviews of the literature have
been written [522–524].

Exogenous determinants

While scant attention has been given to environ-
mental factors that specifically affect the circadian
rhythm of metabolism, there exists an extensive
literature on the general effect of environmental
factors on steady-state metabolism. As was the
case concerning body temperature, the effects of
changes in ambient temperature and food avail-
ability have been particularly well studied.

Birds and mammals can increase metabolic heat
production when exposed to a cold environment,
and this is called cold-induced thermogenesis.
Shivering is one form of cold-induced thermogen-
esis. It is a widespread mechanism of thermogenesis
used to prevent the fall of body temperature in a
cold environment. It consists of small-amplitude,
high-frequency contractions of skeletal muscles. It
is employed both by birds [382,392,525–531] and
by mammals [532–547], including humans [548–
550]. Forms of biological thermogenesis other than
shivering are collectively called non-shivering ther-
mogenesis. Birds seem to rely primarily on shiver-
ing and, if they exhibit thermoregulatory non-
shivering thermogenesis, the muscles themselves
are the probable source [392,528–530,551-554].
Mammals, on the other hand, use non-shivering
thermogenesis extensively in response to cold
stress, and the capacity to use it is strongly affected
by acclimation or acclimatization [534,540–
543,546,555–578]. Mammalian thermoregulatory
non-shivering thermogenesis often relies on the

activation of a specialized tissue, brown adipose
tissue [579,580].

The effects of food availability, and food intake
more specifically, are usually discussed as part of the
phenomenon of diet-induced thermogenesis. Diet-
induced thermogenesis is the fraction of energy
expenditure induced by the ingestion of food, and
some authors include basal metabolic rate in the
definition of diet-induced thermogenesis [581].
There are two types of diet-induced thermogenesis.
The first type is called obligatory because it cannot be
avoided. After a meal is ingested, metabolic rate is
temporarily elevated [520,582–591], and this elevation
is believed to be due partially to the energetic cost of
digestion and partially to a cephalic component invol-
ving mastication as well as arousal [592–598]. The
other type of diet-induced thermogenesis is called
adaptive because its magnitude can be adapted to
conditions of shortage or excess of food supply. That
is, diet-induced thermogenesis can be increased after
overeating and be reduced during starvation or food
restriction [583,599–608]. As was the case for cold-
induced thermogenesis, diet-induced thermogenesis
in mammals seems to depend strongly on the activa-
tion of brown adipose tissue [609].

Relationship of body temperature and
metabolism at the organismal level

Autonomy of the body temperature rhythm

The previous sections described the rhythms of body
temperature andmetabolism separately, but it is well
known that body temperature and metabolism can
affect each other in both directions. Changes in body
temperature can cause changes in metabolism by
affecting the rate of chemical reactions in the body
(and by inducing a thermogenic response), and
changes in metabolism are accompanied by changes
in metabolic heat production, which, in the absence
of compensatory changes in heat loss, will cause a
change in body temperature. Studies in which body
temperature and metabolic rate have been recorded
simultaneously have shown that the two variables
oscillate together through the day [313,520,610–
612], and the obvious question to ask is whether
there is a causal link – and, if so, in which direction.
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The questionmust be asked because changes in body
temperature are the result of the balance between
heat production and heat loss, and a rise in heat
production will not elevate temperature if it is com-
pensated by an equal rise in heat loss.

Studies conducted on reptiles have shown that
endogenously-controlled rhythmicity of body tem-
perature is present in extant ectotherms, the control
being achieved by behavioral selection of suitable
thermal environments [613–616]. For this reason, it
is sensible to assume that the evolution of circadian
rhythmicity of body temperature preceded the evolu-
tion of endothermy in mammals and birds. In fact, it
is believed that endothermy evolved about 70 million
years ago [617–619], much after the evolution of
circadian rhythmicity 2.5 billion years ago [620].
Thus, one can suggest that the ability to adjust meta-
bolic rate evolved to either directly or indirectly facil-
itate the circadian oscillation of body temperature,
even if basal metabolic rate and body temperature
seem to have evolved separately from each other
[621]. In other words, the rhythm of body tempera-
ture must not be a side effect of the rhythm of meta-
bolic thermogenesis; rather, the rhythm of body
temperature must require the rhythmic modulation
of metabolic thermogenesis. That the rhythm of body
temperature is not a simple side effect of the rhythm
of metabolic thermogenesis associated with changes
in locomotor activity has been demonstrated experi-
mentally both in humans and in other animals, as
described in the next two paragraphs.

In order to investigate the potential causal link
between the locomotor activity rhythm (which is a
major thermogenic process) and the temperature
rhythm, several researchers recorded the body tem-
perature rhythm of human subjects maintained in
continuous bed rest [622–624] or undergoing a con-
stant routine protocol, which involves bed rest as well
as sleep deprivation and the ingestion of frequent,
equal-size meals [520,625–627]. Although the ampli-
tude of the rhythm was reduced under this condition
of constant physical inactivity, robust rhythmicity of
body temperature persisted. Thus, while the activity
rhythm may alter the amplitude and shape of the
body temperature rhythm, it does not cause it.

Bed rest cannot be used with animals – because
they do not comply with requests for voluntary rest –
but one can look at the day-night difference in the
correlation between the rhythms of activity and

temperature. It has been found that, although noc-
turnal animals are generally more active at night
than during the day, their body temperature is higher
at night regardless of the actual activity level [628–
632]. Conversely, the body temperature of diurnal
animals is higher during the day regardless of the
actual activity level [306,633]. These relationships are
illustrated in Figure 6 for four different species of
small mammals. Notice that, for the nocturnal ani-
mals (golden hamster and fat-tailed gerbil), body
temperature is higher at night for all levels of activity,
even though there is a small effect of activity level on
body temperature. For the diurnal animals (13-lined
ground squirrel and tree shrew), body temperature is
higher during the day for all levels of activity [633].
Thus, it can be inferred that the body temperature
rhythm in animals, as in humans, is not caused by
the activity rhythm. That is, the body temperature
rhythm is not a side effect of the metabolism rhythm
associated with changes in activity. This conclusion
brings us back to the question of whether the body
generates (or attempts to generate) a temperature
rhythm as a fundamental process of life.

In ectotherms, a rhythm of body temperature can
only be produced by behavioral selection of cooler or
warmer environments, but, in endotherms, endo-
genous heat production (through shivering or non-
shivering thermogenesis) is possible. Because endo-
genous heat production is also at the service of
homeothermy, it is not immediately evident whether
the circadian system or the thermoregulatory system
is in control of thermogenesis at any given time. This
uncertainty is reflected in a controversy about a
hypothetical circadian modulation of the thermore-
gulatory set point.

Half a century ago, most thermal physiologists
endorsed the engineering model of homeostatic
body temperature regulation by an adjustable set
point [634,635]. In the 1980’s, however, a number
of thermal physiologists abandoned the set point
theory and adopted the viewpoint that there is no
master reference-signal generator and that indivi-
dual effector organs are activated directly by their
sensory input [636–639]. Nonetheless, many life
scientists assumed that the circadian oscillation in
body temperature is primarily under homeostatic
control and is secondarily modulated by the circa-
dian system through an oscillation in the thermo-
regulatory set point [17,313,640,641]. According to
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Figure 6. Mean body temperatures associated with different levels of locomotor activity during the dark phase (blue) and the light
phase (yellow) of the light-dark cycle for four species. Error bars indicate SEM.
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this view, the circadian rise in temperature would
be a response to an elevation in the thermoregu-
latory set point, whereas the circadian fall in tem-
perature would be a response to a lowering of the
set point. Because circadian rhythmicity is evolu-
tionarily older than homeothermy, however, the
assumption of a set point change is contentious.
To judge whether there is circadian modulation of
the thermoregulatory set point, one must actually
measure the set point. One way to do this is to
measure the motivation of an organism to coun-
teract an imposed deviation of its internal tem-
perature. Research in many laboratories over the
years has documented that higher ambient tem-
peratures are preferred during the phase of low
body temperature, and lower ambient

temperatures are preferred during the phase of
high body temperature, in rats [30,397,642–646],
mice [647], golden hamsters [644,648,649],
Siberian hamsters [650], fat-tailed gerbils [28],
degus [651], stripe-faced dunnarts[409], tree
shrews [652], flying squirrels [652], mouse lemurs
[653], and humans [654–658]. An example is given
in Figure 7. A degu was housed in a temperature-
gradient chamber with ambient temperatures ran-
ging from 14°C to 33°C, and its body temperature
and preferred ambient temperature were recorded
at 6-minute intervals for 10 or more days [651].
Notice that, as expected for a diurnal animal, body
temperature is high during the day and low during
the night (upper panel). Also, in accordance with
the animal’s crepuscular behavior, body

Figure 7. Daily rhythms of body temperature and selected ambient temperature of a degu (Octodon degus) housed in a
temperature-gradient chamber. The white and black bars at the top indicate the light and dark phases of the prevailing light-
dark cycle (14L:10D).
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temperature shows clear peaks at lights-on and
lights-off. Importantly, the rhythm of behavioral
temperature selection (lower panel) is 180° out of
phase with the rhythm of body temperature, with
higher ambient temperatures being selected during
the night and lower temperatures during the day.
The opposite movement of the two variables is
particularly evident at the times of lights-on and
lights-off. Clearly, higher environmental tempera-
tures are selected when body temperature is low,
and vice versa, indicating that the animal is
attempting to counteract the circadian rhythm of
body temperature. Thus, the oscillation of the set
point cannot possibly be responsible for the tem-
perature rhythm. As a matter of fact, there is no
reason to assume that the set point oscillates at all.
As body temperature oscillates, the animals beha-
viorally counteract the oscillation to defend the
unaltered set point. The thermoregulatory system
actually opposes the oscillation of body tempera-
ture imposed by the circadian system [659,660].

The existence of the body temperature rhythm is
in itself proof that the thermoregulatory system’s
opposition to the circadian oscillation of body tem-
perature is not entirely successful. However, the
amplitude of the temperature rhythm is effectively
reduced by the action of the thermoregulatory sys-
tem. There are at least two types of supportive
evidence for this. One type comes from the com-
parison of the amplitude of the rhythm in animals
maintained in a constant-temperature environment
with the amplitude in animals allowed to continu-
ally select their environmental temperature in a
gradient. The amplitude of the body temperature
rhythmwas reduced in tree shrews and flying squir-
rels allowed to select their environmental tempera-
ture [652]. The other type of supportive evidence
comes from studies in which the thermoregulatory
system was impaired by surgical ablation of the
main thermoregulatory center in the preoptic area
of the brain. The amplitude of the body tempera-
ture rhythm was greatly enhanced in rats and
golden hamsters with preoptic lesions [661–663].
Thus, ablation of the preoptic area releases the
circadian oscillation of body temperature from
inhibitory control. This means that the thermore-
gulatory center in the preoptic area of unlesioned
animals restricts the oscillation of body tempera-
ture to an acceptable range. That is, in normal

animals, the circadian system generates an oscilla-
tory signal that is communicated to the organs
responsible for heat production and heat loss, and
at the same time the thermoregulatory system gen-
erates a set point that, like most control systems, has
a margin of hysteresis error; the integrated output is
an oscillation whose amplitude is restricted to the
boundaries of hysteresis error. For physiologists
who dislike the set point model, the previous sen-
tence can be reworded as follows: in normal ani-
mals, the circadian system generates an oscillatory
signal that is communicated to the organs respon-
sible for heat production and heat loss, and at the
same time independent thermoeffectors are acti-
vated to counteract the incipient alteration in
body temperature; the integrated output is an oscil-
lation whose amplitude is restricted to the range of
activation of the thermoeffectors.

Why there is a body temperature rhythm

One may wonder why should there be a circadian
rhythm of body temperature at all, especially if it is
opposed by the thermoregulatory system. The answer
is that circadian rhythmicity of body temperature
must be evolutionarily adaptive. Circadian rhythmi-
city is an evolutionarily old trait that most likely
existed before the appearance of the first animals
[620]. Seeking warm temperatures in anticipation of
the active phase of the circadian cycle would have
provided an advantage to the original (and extant)
ectothermic animals whose ability to perform bodily
functions was extremely dependent on ambient tem-
perature [10]. Because homeothermy is found today
only in mammals and birds (with a few exceptions), it
must have appeared when circadian rhythmicity was
already a property of every multicellular organism. As
a matter of fact, endothermic homeothermy likely
evolved gradually from an ancestral form of hetero-
thermy [619,664]. Thus, in homeotherms, the more
recent goal of maintaining homeostasis conflicts with
the older goal of causing body temperature to oscil-
late, and this conflict explains the opposition between
the thermoregulatory system and the circadian system
in the control of body temperature. But why should
the older goal of causing body temperature to oscillate
have been retained during evolution? A possible rea-
son to retain rhythmicity of body temperature in
homeotherms is the ability to use body temperature
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as an internal non-photic zeitgeber for the entrain-
ment of multiple slave pacemakers distributed
throughout the body [665–671]. Presumably, envir-
onmental light affects the master circadian pacemaker
in the brain, which modulates the body temperature
rhythm (through behavioral mechanisms in
ectotherms and through behavioral and autonomic
mechanisms in endotherms), which then non-photi-
cally modulates the peripheral clocks. Alternatively,
the presence of a circadian rhythm of body tempera-
ture in extant homeothermic species may simply
reflect the preservation of the body temperature
rhythm as a vestigial function in animal evolution.

Regardless of whether the generation of the
body temperature rhythm is a fundamental pro-
cess or not, one can still wonder how the rhythm is
produced. How does the circadian system generate
the circadian rhythm of body temperature? The
laws of thermodynamics require that changes in
the temperature of a body be the result of changes
in heat flow. Changes in body temperature must
result from the balance of heat gained and heat
lost. For mammals and birds housed in a thermally
stable environment without direct solar radiation,
heat is gained by metabolic heat production, and
heat is lost by radiation, conduction, and convec-
tion [17–19]. Few studies have included the simul-
taneous recording of body temperature, heat
production, and heat loss, but one example is
presented in Figure 8. Shown are 3-day segments
of the records of body temperature, metabolic heat
production, and dry heat loss of a laboratory rat
kept in constant darkness at an ambient tempera-
ture of 24°C [612]. Notice that the oscillation of
body temperature parallels the oscillation of heat
production. Thus, the oscillation of heat produc-
tion could potentially explain the oscillation of
body temperature. However, notice also that heat
loss parallels heat production. That is, although
heat production is high when body temperature
is high, heat loss is also high. This apparent para-
dox results from an incorrect assumption that a
great amount of heat is needed to generate the
body temperature rhythm. In reality, most of the
energy expenditure of, say, a rat is associated with
essential life processes, the maintenance of home-
othermy, and energy required for locomotion. The
body temperature rhythm accounts for only about
6% of the energy expended at thermoneutrality

and only 3% of the energy expended in the cold
[612,672]. Thus, most of the daily oscillation in
heat production and heat loss has nothing to do
with the body temperature rhythm. The mechan-
ism responsible for the circadian rhythm of body
temperature is a minor temporal mismatch
between heat production and heat loss, which
causes the small change in heat balance needed
to generate the body temperature rhythm [612].

Relationship of circadian rhythmicity and
metabolism at the cellular level

After having discussed the relationship of body tem-
perature and metabolism at the organismal level, it
would seem reasonable to discuss the same relation-
ship at the cellular level. However, individual cells do
not regulate their own temperature. Body temperature
regulation is an organismal process. In fact, the circa-
dian clock is temperature compensated and need not
make adjustments for changes in temperature [673–
675], even if other cellular processes are subject to
temperature-induced variations in the rate of chemical
reactions dictated by the Arrhenius equation. On the
other hand, individual cells do possess circadian
clocks, and the relationship of circadian rhythmicity
and metabolism can be discussed at the cellular level.

It has been known for over 20 years that the
molecular mechanism of the circadian clock in
animals involves an auto-regulatory transcrip-
tional feedback loop in which the proteins Clock
and Bmal1 activate the transcription of the period
and cryptochrome genes. The Period and
Cryptochrome proteins then feed back and repress
their own transcription by interaction with Clock
and Bmal1 [676,677]. This is the backbone of the
clock itself, but much has yet to be learned about
how enzyme transcripts controlled by the clock
generate circadian enzyme activity [678]. One
research group has found that the circadian clock
generates oscillations in mitochondrial oxidative
capacity via rhythmic regulation of NAD+ bio-
synthesis [679], as diagrammed in Figure 9.

It was suggested early on that metabolism
might be more than just an output of the clock
and might actually be part of the clock [680].
Research conducted during the past 20 years
indicates that, indeed, metabolism is both an
output from and an input to the circadian
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clock [522,681,682], meaning that the two pro-
cesses are interlinked. One example is the pro-
tein Conidial Separation Protein 1 (CSP-1) in
the bread-mold fungus Neurospora crassa [683].
In Neurospora, the transcriptional feedback loop
of the circadian clock organizes the molecular
output of the cell so that catabolic processes
occur in the morning and anabolic processes

occur in the evening. The csp-1 gene is directly
targeted by the clock (which in Neurospora is
composed primarily of the wc1-wc2 and frq
genes). Interestingly, CSP-1 acts to compensate
the clock for changes in metabolic conditions.
Specifically, CSP-1 is regulated by glucose levels
and represses the expression of wc-1 mRNA
when glucose levels are high [683].

Figure 8. Records of body core temperature, metabolic heat production, and dry heat loss of a laboratory rat kept in constant
darkness at an ambient temperature of 24°C for three consecutive days. The data were collected and are plotted with 6-minute
resolution after smoothing by a 4 hour moving averages filter to eliminate high-frequency oscillations.
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A major unanswered question is, of course, how
circadian rhythmicity of metabolism at the cellular
level relates to circadian rhythmicity at the orga-
nismal level, particularly in complex organisms
such as birds and mammals.

Conclusion

Published studies clearly document circadian rhyth-
micity of body temperature and metabolism. The
rhythms of both variables are generated endogenously

Figure 9. Diagram of the cellular mechanism of circadian regulation of metabolism in the mouse. From Peek and colleagues [679].
Reprinted with permission from AAAS.
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in birds and mammals, are synchronized with the
Earth’s rotation by environmental cycles, and are
further modulated by occasional and recurrent events
in the environment, particularly variations in ambient
temperature and food availability. Although modula-
tion of metabolic heat production is a constitutive
process of the body temperature rhythm, the rhythm
of body temperature is not produced by the rhythm of
heat production associated with physical activity and
sleep-wakefulness. The body temperature rhythm is
achieved by a small variation in heat balance that
results from a minor temporal mismatch between
heat production and heat loss. At the cellular level,
the circadian clock and metabolism are deeply inter-
twined, although it is still not clear how this inter-
twining is reflected at the organismal level.
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